
Choosing the System Moduli of RNS Arithmetic Processors

Khaled M. Elleithy

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

Abstract
Designing an optimal Residue Number System (RNS)

processor in terms of area and speed depends on the
choice of the system moduli. In this paper an optimal
algorithm for choosing the system moduli is presented.
The algorithm takes into consideration several
constraints imposed by the problem definition. The
problem is formalized as an integer programming
problem to optimize an aredtime objective function.

1: Introduction

Residue Number System (RNS) has received increased
attention due to its ability to support high-$peed
concurrent arithmetic [1-5]. Although, Digital Signal
Processing (DSP) applications utilize the efficiencies of
RNS arithmetic in addition and multiplication, they do
not require the difficult RNS operations such as division
and magnitude comparison. RNS has been employed
efficiently in the implementation of DSP processors.

Since special purpose processors are associated with
general purpose computers, binary-to-residue and residue
to-binary conversions become inherently important and
the conversion process should not offset the speed gain in
RNS operations. While the binary-to-residue conversion
does not pose a serious threat to the high speedRNS
operations, the residue-to-binary conversion can be a
bottleneck. Chinese Remainder Theorem (CRT) [6] is
considered the main algorithm for the conversion process.
Several implementations of the residue decoder have been
reported [2,5,7- 101.

Designing an optimal RNS processor in terms of area
and speed depends on the choice of the system moduli.
Most of the reported implementations in the literature for
choosing the system moduli are based on using a special
moduli The residue decoders in [7,8] are based on using
three moduli in the form (2" - 1,2",2n + 1) , where n is
the number of bits. Due to the limitation imposed on the

number of moduli and the choice of them, it is limited in
application. In [9], the residue decoder is based on the
base extension technique, it uses only modular look-up
tables in its implementation. Since look-up tables are
used, the choice of moduli must not be large for the
implementation to be feasible. In addition, it does not
support residue to 2's complement binary number system
conversion. The implementation in [lo] requires that one
of the moduli must be a power of two; therefore, it may be
limited in application. Due to the constraints imposed on
the chosen moduli set, such approaches have limited
applications and the final design is not optimal in area
and time.

In this paper an optimal algorithm for choosing the
system moduli is presented. The algorithm takes into
consideration several constraints imposed by the problem
definition. The problem is formalized as an integer
programming problem to optimize an aredtime objective
function.

2: Residue Number System

In RNS, an integer, X, can be represented by an N-
tuple of residue digits,

X = (5 , r,,, r,)
where q = pqmi with respect to a set of N moduli

Set(q, r2,, r,) * In order to have a unique residue
representation, the moduli must be pairwise relatively
prime, that is,

G O (< , r j) f 1 V i # j

then it is shown that there is a unique representation for
each number in the range of:

n

i=l
0 I X I (n mi = M)

The arithmetic operation on two integers A and B is
equivalent to the arithmetic operation on the residue
representation, that is,

210
1058-6393/97 $10.00 0 1997 IEEE

Authorized licensed use limited to: University of Bridgeport. Downloaded on February 24,2010 at 13:13:27 EST from IEEE Xplore. Restrictions apply.

where " " can be addition, subtraction, or multiplication.
Therefore, it is desired to convert binary arithmetic on
large integers to residue arithmetic on smaller residue
digits in which the operations can be executed in parallel,
and there is no carry chain between residue digits.

system is done using the Chinese Remainder Theorem
(CRT), which states that:

The conversion from RNS to weighted binary number

where
N , M

j=1 mi
M = n m j mj=- , GCD(mj,mk)=l Vj#k

3: ROM Requirements

A typical architecture for RNS-based processor is
shown in Figure 1. The architecture consists of four
stages. In the first stage a variable X is converted to its
RNS representation. In the second stage anarithmetic
operation is performed. The third and fourth stages
perform the conversion fkom RNS representation to
weighted number system representation. The third stage
is responsible for the computation oft's according to the
following definition:

The fourth stage is a modulo adder that adds the t ' s inputs
and gives the final weighted value.

The ROM required for the RNS based system can be
divided into the following:

1- ROM required to implement processor i mod mi , 1
I i 5 n. The processor implementation is shown in
Figure 2. The ROM required for each processor is
given by:

2F'og m,l * 2r'og mil * 1 1 og mil
The total memory requirements for i processors is
given by:

5 22 [log mil * r log mil (1)
i=l

2- ROM required to implement t's. The ROM size is
given by:

3- If the summation unit is implemented using ROM, as
shown in Figure 3, the memory required is:

{ 2Pogmi1 * 2Pgm21 * * 2Pgmnl 1 * =
(3)

The ROM implementation of the summation unit is
impossible since it needs huge memory even for a.
small size system.

4- The implementation of processors as well as t's
calculation can be implemented using ROMs as given
in equations 1 and 2. The total size of ROM is:

4: Implementation of the Chinese Remainder
Theorem

Chinese Remainder Theorem (CRT) is considered the
main algorithm for the conversion process. Several
implementations of CRT have been reported[2,5,7-10]. In

[IO] VU introduced an algorithm for computing the CRT
based on manipulating the form the summands stored in
ROMs. The main idea in the algorithm is representing
the summands in a different form doesn'trequireany
special real-time processing as they are stored in ROMs.
The summands are stored in a form that can be efficiently
used in evaluation of the final summation modulo M. The
following derivation is used

211

Authorized licensed use limited to: University of Bridgeport. Downloaded on February 24,2010 at 13:13:27 EST from IEEE Xplore. Restrictions apply.

Computing the fist part of the sum is easy because
modules mj is small and can be implemented using
ROMs. However the second part is obtained most easily
when mj equal 2k or 2k-1. Since it is not unusual to
have a power of 2 included in most practical systems of
moduli, m j = 2 k is assumed. The following equation is

valid:

4.1 Implementation details

One of the moduli must be equal to 2k* A hardware
There are four

1. At level 1 a Mod Zk adder is used. The speed depends
on the speed of the multi-operand adder. An optimal
adder of @(log n) time complexity[3] can be used in
this stage.

implementation is given in Figure 4.
levels in implementing the modulo M adder as follows:

2. Level 2 is a small size ROM.
3. Levels 3 and 4 are 2-operand adders.

The size of buses and ROMs used are as follows:
1. qi requires log mi bits (0 5 qi 5 mi)

r -!

M

mi

bits (0 I 7 I-)

3. q requires [log m i l bits (q =

4. r requires Llog M] bits (r =

M
2k

5. Y requires Llog M J bits (Y = q(- +2" - M)

6. Z requires Llog MJ bits

4.2 Choosing the System moduli

4.2.1 Choosing the system moduli to minimize the
ROM size: The following two cases are considered
(1) ROM is used to obtain ti's, then the problem is
modeled as follows:

(2) ROM is used to obtain t is and implement the
processors, then the problem is

ml*m,** m,, 2 2 - 1
such that ml, Q, , m,, are relatively prime

As mentioned earlier the problem can be solved using
integer programming. An extra constraint that the moduli
are relatively prime. It is not an integer programming
problem, it needs some modifications, it can be called
Prime Integer Programming (PIP).

4.2.2 Special Case of M = 2' : In this section a special
case is considered. The required condition for M is that
M 2 2' - 1, If M = 2' the difficult problem of
designing a modulo M will be reduced to the design of
multi-operand adder. The integer programming problem
is represented as:

minimize 5 22 [log m,l * [log mil + $(2['0g mll *li>

ml*m,**mn = 2 1 -1
i=l i=l

such that
m,, %, , m, are relatively prime

Solving this special case is as difficult as the general
case. There may not be a feasible solution. If there is no
feasible solution the general problem is solved instead of
the special case problem.. If there is a feasible solution for
the special case, it is likely that the memory requirements
may be larger than the general case. In this case we have
to compare between larger memory and high speedin
realizing the summation network, on the other side, less
memory and complicated summation network.

k
4.2.3 Choosing one of the moduli equal to 2 : The
implementation discussed in section 4.1 requires one of
system moduli to be equal to 2 . In this case the
problem is defined as follows:

k

i=l

m, * m, *.*m,, I 2' - 1
such that m,, q, , m,, are relatively prime

mj = 2 k for anyjandk
m, * %*.*mn 2 2' -1
m,, %, , m,, are relatively prime

such that

212

Authorized licensed use limited to: University of Bridgeport. Downloaded on February 24,2010 at 13:13:27 EST from IEEE Xplore. Restrictions apply.

As in the previous case, there may not be a feasible
solution. If there is no feasible solution the general
problem is solved instead of the special case problem.. If
there is a feasible solution for this special case, it is likely
that the memory requirements may be larger than the
general case. In this case we have to compare between
larger memory and high speed in realizing the summation
network, on the other side, less memory and complicated
summation network.

4.3 New Algorithm for choosing the system moduli

From our previous analysis in section 4.2 we see that
the problem of choosing the system moduli is presented as
an integer programming problem with the following
objective function:

4.3.1 Algorithm

Step # I . Solve objective function such that:
ml*%** mn 52l-1
m,, %, , m,, are relatively prime

mi = 2k for any j and k

Sten #2. Solve objective function such that:
m, a%*..* m,, 12'-1
ml , %, , m,, are relatively prime

mj = 2k for any j and k

Step #3. Solve objective function such that:
m,*q*......*km, 52l-1
m,, m,, , m, are relatively prime

Sten #4. Choosing solution
(a) Speed

Sol 1 (if exists) is the fastest
Sol 2(if exists) is slower than Sol 1
Sol 3 is the slowest

(b) Memory requirements
Sol 3 needs the least memory
Sol 2 needs memory equal or greater than Sol 3
Sol 1 needs memory similar to Sol 3

Sol 1: using n-operands adder.
Sol 2: is implementation-Apigue 43.
Sol 3: is Elleithy's implementation[2].

(c) Implementation

approach with extra constraint of having relatively prime
moduli set. Table 1 shows the results starting from 7-bit
output to 16 bits. The approach is general and can be used
to obtain results for larger bits. For each bit size a number
of solutions are obtained. In Table 1 onlythesolutions
with the minimum ROM size are shown.

5: Conclusions

Conversion from Binary Representation into RNS
Representation is a time consuming process. In this pa er
the (CRT) is used as the man algorithm for &e
conversion process. An algorithm to design optimal RNS
processor in terms of area and speed depends on the
choice of the system moduli. In this paper an optimal
algorithm for choosing the system moduli is presented.
The algorithm takes into consideration several constraints
imposed by the problem definition. The problem is
formalized as an integer programming problem to
optimize an areahime objective function.

Acknowledgments

The author would like to acknowledge King Fahd
University of Petroleum and Minerals for support
provided for this work.

References

1-

2-

3-

4-

5-

6-

K. M. Elleithy, and M. A. Bayoumi, "A Systolic
Architecture for Modulo Multiplication," EEE
Transactions on Circuits and Systems-II: Analog and
Digital Signal Processing, vol. 42, no. 11, pp. 725-729,
Nov. 1995.
K. M. Elleithy and M. A. Bayoumi, "Fast and Flexible
Architectures for RNS Arithmetic Decoding," IEEE
Transactions on Circuits and Systems-II: Analog and
Digital Signal Processing, vol. 39, no. 4, pp. 226-235,
April 1992.
K. M. Elleithy and M. A. Bayoumi, '!A Atgorithm
for modulo Addition, " IEEE Transactions on Circuits
and Systems, vol. 37, no. 5, pp. 628-631, May 1990.

K. M. Elleithy and M. A. Bayoumi "A theta(1)
Algorithm for Modulo Multiplication," Proc. of the 32nd
Midwest Symposium on Circuits and Systems, Aug.
1989.
K. M. Elleithy, M. A. Bayoumi, and K. P. Lee,
" @(log n) Architectures for RNS Arithmetic
Decoding," Proc. of the 9th Symposium on Computer
Arithmetic, pp. 202-209, Sep. 1989.
S. Szabo and R. I. Tanaka, "Residue Arithmetic and its
Applications to Computer Technology," New York
McGraw-Hill, 1967.

4.3.2 Results: The problem for choosing the system
moduli has been solved using the integer programming

213

Authorized licensed use limited to: University of Bridgeport. Downloaded on February 24,2010 at 13:13:27 EST from IEEE Xplore. Restrictions apply.

7- Andraos and H. Ahmed, "A New Efficient Memoryless
Residue to Binary Converter," IEEE Trans. Circuits

M. Ibrahim and S . N. Saloum, "An Efficient Residue to
Binary Converter Design," IEEE Trans. Circuits Syst.,
vol. 35, pp. 1156-1158, September 1988.

9- P . Shenoy and R. Kumaresan, "Residue to Binary
Conversion for RNS Arithmetic Using OnlyMcdular

Syst., vol. 35, NOV. 1988, pp. 1441-1444.
8-

\

. I
I I -

I-

I

I

I I
I I

I

I
, Rnal Result

1 (Binaly)

I

I

I
\

Figure 1. RNS-Based Architecture.

Figure 2. Processor i mod mi Implementation.

Look-up Tables," IEEE Trans. circuits Syst., vol. 35, pp.
1158-1162, September 1988.

10- V. Vu, "Efficient Implementations of the CRT for Sign
Detection and Residue Decoding," IEEE Trans. Comp.,

11- N. Zhang, B. Shirazi, and D. Y. Y. Yun, "Parallel
Designs for Chinese Remainder Conversion," Proc.
IEEE 16 th Annual Conf. on Parallel Processing, Aug.
1987.

vol. C-34, pp. 646-651, July 1985.

binary - t log "n]
Figure 3. Implementation of the CRT Decoder.

1

Figure 4. Implementation of the CRT decoder
with one of the moduli equal Bk -

Table 1 : Optimal ROM size for RNS processors where the bus size varies between 7 and 16 bits.

2 14

Authorized licensed use limited to: University of Bridgeport. Downloaded on February 24,2010 at 13:13:27 EST from IEEE Xplore. Restrictions apply.

