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Abstract 
Designing an optimal Residue Number System (RNS) 

processor in terms of area and speed depends on the 
choice of the system moduli. In this paper an optimal 
algorithm for choosing the system moduli is presented. 
The algorithm takes into consideration several 
constraints imposed by the problem definition. The 
problem is formalized as an integer programming 
problem to optimize an aredtime objective function. 

1: Introduction 

Residue Number System (RNS) has received increased 
attention due to its ability to support high-$peed 
concurrent arithmetic [1-5]. Although, Digital Signal 
Processing (DSP) applications utilize the efficiencies of 
RNS arithmetic in addition and multiplication, they do 
not require the difficult RNS operations such as division 
and magnitude comparison. RNS has been employed 
efficiently in the implementation of DSP processors. 

Since special purpose processors are associated with 
general purpose computers, binary-to-residue and residue 
to-binary conversions become inherently important and 
the conversion process should not offset the speed gain in 
RNS operations. While the binary-to-residue conversion 
does not pose a serious threat to the high speedRNS 
operations, the residue-to-binary conversion can be a 
bottleneck. Chinese Remainder Theorem (CRT) [6] is 
considered the main algorithm for the conversion process. 
Several implementations of the residue decoder have been 
reported [2,5,7- 101. 

Designing an optimal RNS processor in terms of area 
and speed depends on the choice of the system moduli. 
Most of the reported implementations in the literature for 
choosing the system moduli are based on using a special 
moduli The residue decoders in [7,8] are based on using 
three moduli in the form (2" - 1,2",2n + 1) , where n is 
the number of bits. Due to the limitation imposed on the 

number of moduli and the choice of them, it is limited in 
application. In [9], the residue decoder is based on the 
base extension technique, it uses only modular look-up 
tables in its implementation. Since look-up tables are 
used, the choice of moduli must not be large for the 
implementation to be feasible. In addition, it does not 
support residue to 2's complement binary number system 
conversion. The implementation in [lo] requires that one 
of the moduli must be a power of two; therefore, it may be 
limited in application. Due to the constraints imposed on 
the chosen moduli set, such approaches have limited 
applications and the final design is not optimal in area 
and time. 

In this paper an optimal algorithm for choosing the 
system moduli is presented. The algorithm takes into 
consideration several constraints imposed by the problem 
definition. The problem is formalized as an integer 
programming problem to optimize an aredtime objective 
function. 

2: Residue Number System 

In RNS, an integer, X, can be represented by an N- 
tuple of residue digits, 

X = ( 5 ,  r,, .. .., r,) 
where q = pqmi with respect to a set of N moduli 

Set(q, r2, .. . ., r,) * In order to have a unique residue 
representation, the moduli must be pairwise relatively 
prime, that is, 

G O ( < ,  r j )  f 1 V i # j  

then it is shown that there is a unique representation for 
each number in the range of: 

n 

i=l 
0 I X I (n mi = M )  

The arithmetic operation on two integers A and B is 
equivalent to the arithmetic operation on the residue 
representation, that is, 
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where " " can be addition, subtraction, or multiplication. 
Therefore, it is desired to convert binary arithmetic on 
large integers to residue arithmetic on smaller residue 
digits in which the operations can be executed in parallel, 
and there is no carry chain between residue digits. 

system is done using the Chinese Remainder Theorem 
(CRT), which states that: 

The conversion from RNS to weighted binary number 

where 
N , M  

j=1 mi 
M = n m j  mj=-  , GCD(mj,mk)=l Vj#k  

3: ROM Requirements 

A typical architecture for RNS-based processor is 
shown in Figure 1. The architecture consists of four 
stages. In the first stage a variable X is converted to its 
RNS representation. In the second stage anarithmetic 
operation is performed. The third and fourth stages 
perform the conversion fkom RNS representation to 
weighted number system representation. The third stage 
is responsible for the computation oft's according to the 
following definition: 

The fourth stage is a modulo adder that adds the t ' s  inputs 
and gives the final weighted value. 

The ROM required for the RNS based system can be 
divided into the following: 

1- ROM required to implement processor i mod mi , 1 
I i 5 n. The processor implementation is shown in 
Figure 2. The ROM required for each processor is 
given by: 

2F'og m,l * 2r'og mil * 1 1 og mil 
The total memory requirements for i processors is 
given by: 

5 22 [log mil * r log mil ( 1 )  
i=l 

2- ROM required to implement t's. The ROM size is 
given by: 

3-  If the summation unit is implemented using ROM, as 
shown in Figure 3,  the memory required is: 

{ 2Pogmi1 * 2Pgm21 * .... * 2Pgmnl 1 * = 
( 3 )  

The ROM implementation of the summation unit is 
impossible since it needs huge memory even for a. 
small size system. 

4- The implementation of processors as well as t's 
calculation can be implemented using ROMs as given 
in equations 1 and 2. The total size of ROM is: 

4: Implementation of the Chinese Remainder 
Theorem 

Chinese Remainder Theorem (CRT) is considered the 
main algorithm for the conversion process. Several 
implementations of CRT have been reported[2,5,7-10]. In 

[IO] VU introduced an algorithm for computing the CRT 
based on manipulating the form the summands stored in 
ROMs. The main idea in the algorithm is representing 
the summands in a different form doesn'trequireany 
special real-time processing as they are stored in ROMs. 
The summands are stored in a form that can be efficiently 
used in evaluation of the final summation modulo M. The 
following derivation is used 
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Computing the fist  part of the sum is easy because 
modules mj  is small and can be implemented using 
ROMs. However the second part is obtained most easily 
when mj  equal 2k or 2k-1. Since it is not unusual to 
have a power of 2 included in most practical systems of 
moduli, m j  = 2 k is assumed. The following equation is 

valid: 

4.1 Implementation details 

One of the moduli must be equal to 2k* A hardware 
There are four 

1. At level 1 a Mod Zk adder is used. The speed depends 
on the speed of the multi-operand adder. An optimal 
adder of @(log n) time complexity[3] can be used in 
this stage. 

implementation is given in Figure 4. 
levels in implementing the modulo M adder as follows: 

2. Level 2 is a small size ROM. 
3. Levels 3 and 4 are 2-operand adders. 

The size of buses and ROMs used are as follows: 
1. qi requires log mi bits (0 5 qi 5 mi)  

r -! 

M 

mi 

bits (0 I 7 I-) 

3. q requires [log m i l  bits (q  = 

4. r requires Llog M] bits ( r  = 

M 
2k 

5. Y requires Llog M J  bits (Y = q(- +2" - M )  

6. Z requires Llog MJ bits 

4.2 Choosing the System moduli 

4.2.1 Choosing the system moduli to minimize the 
ROM size: The following two cases are considered 
(1) ROM is used to obtain ti's, then the problem is 
modeled as follows: 

(2) ROM is used to obtain t is  and implement the 
processors, then the problem is 

ml*m,* ......* m,, 2 2 - 1  
such that ml, Q, . . . . . , m,, are relatively prime 

As mentioned earlier the problem can be solved using 
integer programming. An extra constraint that the moduli 
are relatively prime. It is not an integer programming 
problem, it needs some modifications, it can be called 
Prime Integer Programming (PIP). 

4.2.2 Special Case of M = 2' : In this section a special 
case is considered. The required condition for M is that 
M 2 2' - 1,  If M = 2' the difficult problem of 
designing a modulo M will be reduced to the design of 
multi-operand adder. The integer programming problem 
is represented as: 

minimize 5 22 [log m,l * [log mil  + $(2['0g mll *li> 

ml*m,* ......*mn = 2  1 -1 
i=l i=l 

such that 
m,, %, . . . . . , m, are relatively prime 

Solving this special case is as difficult as the general 
case. There may not be a feasible solution. If there is no 
feasible solution the general problem is solved instead of 
the special case problem.. If there is a feasible solution for 
the special case, it is likely that the memory requirements 
may be larger than the general case. In this case we have 
to compare between larger memory and high speedin 
realizing the summation network, on the other side, less 
memory and complicated summation network. 

k 
4.2.3 Choosing one of the moduli equal to 2 : The 
implementation discussed in section 4.1 requires one of 
system moduli to be equal to 2 . In this case the 
problem is defined as follows: 

k 

i=l 

m, * m, *. . . . . .*m,, I 2' - 1 
such that m,, q, . . . . . , m,, are relatively prime 

mj = 2 k  for anyjandk 
m, * %*. . . . . .*mn 2 2' -1  
m,, %, . . . . . , m,, are relatively prime 

such that 
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As in the previous case, there may not be a feasible 
solution. If there is no feasible solution the general 
problem is solved instead of the special case problem.. If 
there is a feasible solution for this special case, it is likely 
that the memory requirements may be larger than the 
general case. In this case we have to compare between 
larger memory and high speed in realizing the summation 
network, on the other side, less memory and complicated 
summation network. 

4.3 New Algorithm for choosing the system moduli 

From our previous analysis in section 4.2 we see that 
the problem of choosing the system moduli is presented as 
an integer programming problem with the following 
objective function: 

4.3.1 Algorithm 

Step # I .  Solve objective function such that: 
ml*%* ......* mn 52l-1 
m,, %, . . . . . , m,, are relatively prime 

mi = 2k for any j and k 

Sten #2. Solve objective function such that: 
m, a%*.. . . . .*  m,, 12'-1 
ml , %, . . . . . , m,, are relatively prime 

mj = 2k for any j and k 

Step #3. Solve objective function such that: 
m,*q*......*km, 52l-1 
m,, m,, . . . . . , m, are relatively prime 

Sten #4. Choosing solution 
(a) Speed 

Sol 1 (if exists) is the fastest 
Sol 2(if exists) is slower than Sol 1 
Sol 3 is the slowest 

(b) Memory requirements 
Sol 3 needs the least memory 
Sol 2 needs memory equal or greater than Sol 3 
Sol 1 needs memory similar to Sol 3 

Sol 1: using n-operands adder. 
Sol 2: is implementation-Apigue 43. 
Sol 3: is Elleithy's implementation[2]. 

(c) Implementation 

approach with extra constraint of having relatively prime 
moduli set. Table 1 shows the results starting from 7-bit 
output to 16 bits. The approach is general and can be used 
to obtain results for larger bits. For each bit size a number 
of solutions are obtained. In Table 1 onlythesolutions 
with the minimum ROM size are shown. 

5: Conclusions 

Conversion from Binary Representation into RNS 
Representation is a time consuming process. In this pa er 
the (CRT) is used as the man algorithm for &e 
conversion process. An algorithm to design optimal RNS 
processor in terms of area and speed depends on the 
choice of the system moduli. In this paper an optimal 
algorithm for choosing the system moduli is presented. 
The algorithm takes into consideration several constraints 
imposed by the problem definition. The problem is 
formalized as an integer programming problem to 
optimize an areahime objective function. 
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Figure 4. Implementation of the CRT decoder 
with one of the moduli equal Bk - 

Table 1 : Optimal ROM size for RNS processors where the bus size varies between 7 and 16 bits. 
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